25=.3t^2+5t

Simple and best practice solution for 25=.3t^2+5t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 25=.3t^2+5t equation:


Simplifying
25 = 0.3t2 + 5t

Reorder the terms:
25 = 5t + 0.3t2

Solving
25 = 5t + 0.3t2

Solving for variable 't'.

Reorder the terms:
25 + -5t + -0.3t2 = 5t + -5t + 0.3t2 + -0.3t2

Combine like terms: 5t + -5t = 0
25 + -5t + -0.3t2 = 0 + 0.3t2 + -0.3t2
25 + -5t + -0.3t2 = 0.3t2 + -0.3t2

Combine like terms: 0.3t2 + -0.3t2 = 0.0
25 + -5t + -0.3t2 = 0.0

Begin completing the square.  Divide all terms by
-0.3 the coefficient of the squared term: 

Divide each side by '-0.3'.
-83.33333333 + 16.66666667t + t2 = 0

Move the constant term to the right:

Add '83.33333333' to each side of the equation.
-83.33333333 + 16.66666667t + 83.33333333 + t2 = 0 + 83.33333333

Reorder the terms:
-83.33333333 + 83.33333333 + 16.66666667t + t2 = 0 + 83.33333333

Combine like terms: -83.33333333 + 83.33333333 = 0.00000000
0.00000000 + 16.66666667t + t2 = 0 + 83.33333333
16.66666667t + t2 = 0 + 83.33333333

Combine like terms: 0 + 83.33333333 = 83.33333333
16.66666667t + t2 = 83.33333333

The t term is 16.66666667t.  Take half its coefficient (8.333333335).
Square it (69.44444447) and add it to both sides.

Add '69.44444447' to each side of the equation.
16.66666667t + 69.44444447 + t2 = 83.33333333 + 69.44444447

Reorder the terms:
69.44444447 + 16.66666667t + t2 = 83.33333333 + 69.44444447

Combine like terms: 83.33333333 + 69.44444447 = 152.7777778
69.44444447 + 16.66666667t + t2 = 152.7777778

Factor a perfect square on the left side:
(t + 8.333333335)(t + 8.333333335) = 152.7777778

Calculate the square root of the right side: 12.360330813

Break this problem into two subproblems by setting 
(t + 8.333333335) equal to 12.360330813 and -12.360330813.

Subproblem 1

t + 8.333333335 = 12.360330813 Simplifying t + 8.333333335 = 12.360330813 Reorder the terms: 8.333333335 + t = 12.360330813 Solving 8.333333335 + t = 12.360330813 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-8.333333335' to each side of the equation. 8.333333335 + -8.333333335 + t = 12.360330813 + -8.333333335 Combine like terms: 8.333333335 + -8.333333335 = 0.000000000 0.000000000 + t = 12.360330813 + -8.333333335 t = 12.360330813 + -8.333333335 Combine like terms: 12.360330813 + -8.333333335 = 4.026997478 t = 4.026997478 Simplifying t = 4.026997478

Subproblem 2

t + 8.333333335 = -12.360330813 Simplifying t + 8.333333335 = -12.360330813 Reorder the terms: 8.333333335 + t = -12.360330813 Solving 8.333333335 + t = -12.360330813 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-8.333333335' to each side of the equation. 8.333333335 + -8.333333335 + t = -12.360330813 + -8.333333335 Combine like terms: 8.333333335 + -8.333333335 = 0.000000000 0.000000000 + t = -12.360330813 + -8.333333335 t = -12.360330813 + -8.333333335 Combine like terms: -12.360330813 + -8.333333335 = -20.693664148 t = -20.693664148 Simplifying t = -20.693664148

Solution

The solution to the problem is based on the solutions from the subproblems. t = {4.026997478, -20.693664148}

See similar equations:

| 2/10=x/20 | | 384w^2-294=0 | | n^2(n-2)(2n-5)=0 | | 108n=(n-2)*180 | | -4-14= | | 2b^5y^4/5y*15y/4b | | 2b+2=5b-16 | | 6(4s+8)=264 | | 6(x+8)=-6(2x-6)+9x | | 12x+5=10x-25 | | n^2(n+2)(2n+5)=0 | | x+21+34=180 | | 6(2l+5)=54 | | k-5+1=11 | | 8y+3=19y-74 | | P-1=2p+3p-10 | | 4(a-8)=28 | | 7x+11=4y | | -4*6x-19=5 | | -4(2-3x)=7-(1/2)(4x-6) | | 4x-16(32)= | | 5s+40=110 | | 39.5=(12+B-14)*0.414 | | 5x-11=3x+25 | | 60n=(n-2)*180 | | 4p(6)+27=39 | | X^2(2x-1)=2x-1 | | -13y^2+208=0 | | 10(9y-2)+7y=-5 | | .07x+.05(x-10)=5.7 | | 5x+2(X-3)=50 | | v-9+7=14 |

Equations solver categories